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ABSTRACT

In this article, we consider the problem of estimating the parameters of a generalized double
gamma distribution using a method based on spacings, the gaps between successive ordered
observations, and compare it with other methods that have been used in the past.

Keywords and phrases: Generalized double gamma distribution, maximum likelihood es-
timator, maximum product of spacings estimator, best linear unbiased estimator, method of
moments estimator, location and scale parameters.

1.1 Introduction

A continuous random variable X is said to have a “generalized double gamma distribution”
with parameters (y, 0, «, 8) if its pdf is given by

B _
fo(z) = (a)oPa* |

Y :
=5 |z — P!, —oo <z < oo (1)

We will henceforth denote this using X ~ GDG(u, 0, a, 3). The parameter pu € R is a location
parameter, o > 0 is a scale parameter and @ > 0, 8 > 0 are two shape parameters.
It can be easily checked that X ~ GDG(u, 0,0, ), if and only if

B
X -
Y = —Uﬂ Gamma(a, 1)

which is the standard gamma distribution with pdf

fuy) = eVy* Ty >0

T'(a)

The GDQ distribution is obtained by reflecting (i.e., doubling) a generalized gamma distribu-
tion (Johnson and Kotz, 1970, p. 197) about the location parameter p, and is thus symmetric
about p.
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The resulting family constitutes a very broad class of symmetric distributions, which can

be either unimodal or bimodal, according as «f > 1 or af < 1 respectively. Figure 1 gives the
lots of the generalized double gamma density for u = 0,0 = 1 and selected values of «, .

The GDG family (1) includes several well-known members as special cases. Setting o =
1 3 =2 gives the N(u,02/2 distribution while setting a = 1,8 = 1 results in the standard
gouble exponential (or Laplace) distribution DE (0, 1). Other special cases of this distribution
nave appeared elsewhere in the literature. Plucinska (1965), Plucinska (1966), Plucinska (1967)
proposed a special subclass of (1) with p = 0, which is obtained by reflecting a generalized
gamima distribution about the origin. The corresponding density is given by

_ 'B —|=|? Ba—1
flz) = _—2I‘(a)aﬂ°‘e H |z] , —00 <2 <00,
Borghi (1965) introduced the reflected gamma distribution, which is given by the pdf

B

f(f'?):W

e_|m_;ﬂ||a:—u|°‘_1, —00 < I < 00

and is obtained by setting 8 = 1 in (1). The double Weibull distribution with density function
B

_|z=n|f o
f(@) = 5.5 R R (2)

was introduced by Balakrishnan and Kocherlakota (1985), and is obtained by setting a = 1
in (1).
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Figure 1: Density of the generalized double gamma distribution for u = 0, 6 = 1 and for various values of o, B.

‘ Members of the GDG family are used in various modeling situations. The normal dis-
tribution is of course the most widely used distribution in statistics for modeling symmetric
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bell-shaped phenomenon. The Laplace distribution is commonly used as an alternative to the
normal distribution in robustness studies (see Tiao and Lund, 1970, Andrews et al., 1972). It
has also been used in astronomy, biological and environmental sciences, engineering, finance
and quality control (see Nadarajah, 2004). Sornette et al. (2000), Malevergne et al. (2005),
Malevergne et al. (2006), Malevergne and Sornette (2004), Malevergne and Sornette (2005)
have used the modified Weibull distribution

|23, —co <z < o0

to model asset returns in finance. It is obtained by setting 4 = 0,a = % in (1). Other

notable uses of members of the GDG family of distributions have been in engineering, such as
modeling brittle and ductile strengths (Nadarajah and Kotz, 2008), modeling system reliability
(Plucinska, 1967), modeling speech amplitudes and adjacent-sample differences in video signals
(Jayant and Noll, 1984), (Fggerton and Srinath, 1986, Joshi and Fischer, 1995, Lam and
Goodman, 2000, Chang et al., 2005).

In this article, we investigate a new method of estimation of the location and scale pa-
rameters of the GDG family. The rest of the article is organized as follows. The estimation
procedure is proposed in Section 2. A small-scale simulation study is used to compare the
proposed estimator to some previously known estimators in Section 3. Use of the proposed
method is illustrated with an example in Section 4. The article ends with some concluding
remarks in Section 5.

1.2 Parameter Estimation

Given a random sample X1, ..., X, from GDG(u, o, a, 8), dur goal is to estimate the param-
eters i and ¢ in (1), where a, 8 are assumed to be known. The most popular method of
parameter estimation in statistics, is of course, maximum likelihood (ML). However, when
af < 1, this method breaks down when applied to (1), since the likelihood function becomes
unbounded at u = X, for ¢ = 1,...,n, making estimation of ¢ inconsistent. Thus, we need to
consider alternate estimation procedures.

Balakrishnan and Kocherlakota (1985) proposed estimation of p and o in (1) using linear
combinations of the order statistics. They provided tables of coefficients of order statistics
needed to construct best linear unbiased estimator (BLUE) of p and & for ${0.5,0.75,2, 3}
and n = 2(1)(10). Later, Rao and Narasimham (1989) extended the tables of Balakrishnan
and Kocherlakota (1985) to n = 11(1)20 for both complete and censored data. Kantam and
Narasimham (1991) discussed best linear unbiased estimation of 4 and ¢ in GDG(y, 0, @, 1)
again for complete and censored data and provided tables for the coefficients when n = 2(1)10
for @{2,3}. The disadvantage of these methods is that the coefficients used in the linear
combinations are cumbersome to obtain and the estimators will likely have poor behavior
when compared to the MLE if the latter is available.

We propose to use an alternative procedure, called the Maximum Product of Spacings
(MPS) method, which produces asymptotically equivalent estimators as the ML method but
avoids problems such as non-uniqueness and unboundedness that is sometimes encountered by
the ML method. See Ghosh and Jammalamadaka (2001) and the references contained therein
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Jils about estimation based on spacings, and Ranneby (1984) for the special case of

or (et ; . 2
l pn product of spacings estimator.

um‘;ll::] MP8 method proceeds as follows. Let be Xy < X(2) < ... < X(») the order statistics
hased on a random sample from a distribution with cdf F(. |@) where © is the vector of
[nknown parameters. We then define the function

n+1

H X)@18) - F(X-1)0)],
where X(o) = —0 and X, 41y = 0o. The quantity g(©) is the product of the gaps (or spacings)

helween © -onsecntive values of the transformed order statistics arising from the sample. The
MPS estimator of © is given by the maximizer of g(0). For our case, we assume that the two
shape parameters are completely known and thus © = (u, o).

The estimator is motivated by the fact that when ©g is the true value of the parameter
vector, by the probability integral transform, the quantities F'(X(;)|©0) — F/(X(;_1)|00) are
distributed as spacings from U(0,1), which, on average, partition the interval (0,1) into equal
segments. Maximizing g(©) is an attempt to find the © that bring all the F(X(;|©) —

(X(l 1) |©) close T’ since it is well known that subject to the restriction that a; > 0 and
n41
Z a; = 1, the quantity ﬁl a; is maximized at a; = ﬁ
1

Whlle the maximizer will typically not have an analytical closed-form solution, one can
perform a numerical maximization to arrive at the desired answer for any given data set (note
that this is also often the case with ML estimation). However, since the function g(©) is
always bounded, this method will always give rise to a valid estimator and not suffer from the
drawback faced by ML method where the likelihood function may become unbounded (such
as when «f < 1 in the GDG family). In addition, as discussed in Ghosh and Jammalamadaka
(2001), the resulting estimator enjoys all the nice asymptotic properties of the ML estimator
when the latter exists.

One may also use the method of moments (MOM) to estimate p and o. It is easily shown
that if X ~ GDG(y,0,a, ), then

I'fa+ 3
E(X)=p, and Var(X)=o? ——(f‘%ﬂ).

Hence, the method of moments estimators of ;1 and o are

pvom = X, and opom = S
where X and S are the sample mean and standard deviation respectively.

1.3 A Simulation Study on the Performance of
Estimators

We compare properties of the MPSE, the MLE (when available), the BLUE and MOME of
K and o using a brief simulation study The study is conducted as follows: For a specific

%
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(p, 0y v, 3) combination, we first gene
digtribution (the choice of this sample size was
coefficients). We then use the samples fo estimate (u,0)
v, i) are known. This procedure is repeated 5000 times, to o

srate random samples of size n = 10 from GDG(u, 0, &, )
somewhat dictated by the availability of BLUE
using the four methods, assuming
btain estimates of the respective

root mean squared errors (RMSE), which are reported in Table 1.

Table 1: Estimated root mean squared error (RMSE) in estimating p (corresponding figures for
estimating ¢ are in parentheses) using the different methods when n = 10. The RMSE calculations
are based on 5000 simulations. Lower RMSE indicates better performance. Note that MLE does not
exist when 8 < 1. However, when MLE exists, it performs roughly the same as MPSE, which is always
more efficient than BLUE. The calculations for BLUE are based on coefficients from Balakrishnan
and Kocherlakota (1985) and Kantam and Narasimham (1991).

(s 0y, B) MPSE MLE BLUE MOM
(0,1,1,5) | 0.30 (1.51) NA 5.27 (2.17) | 1.58 (0.69)
(0,1,1,.75) | 0.37 (0.73) NA 1.48 (1.21) | 0.64 (0.46)
0.1,1,2) | 0.36 (0.25) | 0.42 (0.18) | 0.48 (1.07) | 0.31 (0.18)
(0.1.1,3) | 0.42 (0.28) | 0.44 (0.19) | 052 (1.11) | 0.30 {0.14)
(0.1,2,1) | 0.86 (0.32) | 0.04 (0.24) | 1.06 (1.08) | 0.78 (0.24)
(0,1,3,1) | 1.24 (0.26) | 1.54 (0.22) | 1.60 (1.07) | 1.08 (0.20)
(0,1,4,1) | 1.57 (0.23) | 2.17 (0.21) | 2.24 (1.07) | 1.41 (0.18)
(0,1,5,1) | 2.06 (0.22) | 287 (0.22) | 292 (1.07) | 176 (0.16)

From the table, it is obvious that the BLUEs perform uniformly worse than the other two
methods of estimation, both in estimating p and 0. The MPSE has an advantage for estimating
1 when a8 < 1 (note that in this case, the MLE does not even exist). For estimating y when
af > 1, MOM gives slightly better estimates than MPS, which already improves upon the ML
method. For estimating o, MOM seems to be performing hetter than ML, which is also better
than MPS. An idea of the comparative sampling distributions of the resulting estimators can
be obtained from the side-by-side boxplots of the estimators of p and ¢ using three of the
methods based on samples from GDG(0,1,3,1) given in Figure 2.
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Figure 2 Boxplots of estimates of p and ¢ using MPS, ML and MOM. Estimates were obtained from
random samples of size n = 10 from GDG(0, 1, 3, 1). Results are based on 5000 simulations.
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1.4 A Practical Example

video compression is widely used in many applications such as transmission of high-definition
TV signals and storage of surveillance footage. Most video compression is currently based on
co-called hybrid coding, which is motion compensation followed by a two-dimensional spatial
transform. An alternative method is to view a video signal as 3-dimensional — two spatial
dimensions and one time-dimension — and apply the 3-dimensional discrete cosine transform
(DCT). This method was first proposed by Roese et al. (1977), but due to high computational
cost and memory requirements compared to hybrid coding, has not been in much use. However,
with availability of cheap computational power and inemory, there has been a renewed interest
in 3D DCT. More details and further references can be found in Bhaskaranand (2008).

Knowledge of the distribution of the 3D DCT coefficients is essential in designing optimal
quantizers for the 3D DCT method. To this effect, Bhaskaranand (2008) undertook a study of
the distributional properties of the 3D DCT coefficients arising from the luminance components
of videos with low or structured motion. Eight different test sequences were considered, from
which samples of 3D DCT coeflicients were obtained. Table 2 provides a random sample of
100 such coefficients.

Table 2: A random sample of 100 coefficients from discrete cosine transform (DCT) of a video signal

59.27 | —43.01 1.22 | -241.91 28.32
8.27 3.94 | -18.54 —29.93 53.08

22.59 | -16.01 9.88 -2.16 —53.75
20.42 46.90 | -29.53 —10.49 —4.45
6.05 50.26 -1.55 -27.32 0.50
113.17 1.89 10.68 18.72 6.99
—417.62 | 101.99 | -72.72 -8.10 56.00
10.09 | -38.88 | -55.94 7.56 -3.96
18.64 | -14.00 19.45 20.62 | —118.44 |
-2.44 37.13 | 195.62 -2.13 54.09

12.38 0.00 | 2926 | —11.96 16.62
7659 | -1.29 | 894 | -32.33 17.56
0.18 | -8.77 3.70 10.44 —7.45
33.56 | 43.73 774 10.29 10.74
~0.04 294 | 19.47 12.54 36.93
6.32 | 74.41 7.30 51.26 80.76

~74.40 0.46 4.7 | 031 1.41
-543.44 7.01 -9.01 99.73 19.74
-4.44 | -22.65 -1.65 8.41 -91.95

—24.75 35.84 -6.79 -32.93 -70.03

The Gaussian, Laplace, double-gamma and Rayleigh distributions are commonly used for
modeling DCT coefficients. The four possible contenders were

N2
Ix(x) :\/%0 exp ( (1202'“) > ,—00 < & < 00, (3)
Fx(@) = 25 exp (~Ale — ), o0 < < o0, @)

‘*—
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fx(z) = i exp <_\/§|m_“|>,—oo<:v<oo, (5)

8oz ~m] 20
and )
x —z
fx(z)= -2 &XP (Tﬂ) ,x > 0. (6)

In engineering literature, the family (5) has been found to be a good fit for such data, a
fact re-confirmed through various goodness of fit tests in Bhaskaranand (2008). This is the

density of GDG(u,j——g, %, 1). Note that af = % < 1, and hence the ML method does not
work for estimation of u,s. We thus need to resort to the MPS method, which gives uyps =
3.74, OMPS — 74.14.

Note also that for this distribution, since E(X) = u and Var(X) = o2, as an alternative,
one can use the method of moments to get uyom = X = —4.31 and oo = S = 84.38. The
corresponding density plots as well as the histogram of the data are given in Figure 3. Close
examination of Figure 3 indicates that the estimated density from MPS provides a better fit
to the observed data. This can also be confirmed with a formal test of goodness-of-fit.

1.5 Concluding Remarks

We have proposed an alternative method of estimating p and ¢ in the generalized double
gamma distribution when « and 5 are known. This method performs very well in estimating
when compared with other competing methods, and provides better estimates of the underlying
distribution. From the simulation studies, it appears that MOM estimate of ¢ is better but
this could be an artifact of the restricted sample size that we chose for these simulations. It
would be interesting to perform more extensive simulations using different sample sizes, but
one would then have to exclude the BLUE from consideration because of the limited availability
of the coefficients needed.

Even when all the four parameters of the distribution in (1) are unknown, the proposed
MPS method can be easily adapted to estimate all of them simultaneously. It is not possible
to do so with the other approaches like the method of moments, the maximum likelihood and
the best linear unbiased estimation methods.
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Figure 3: Histogram of the DCT coefficients with the superimposed estimated
densities using MOM and MPS.
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